
书书书

小 型 微 型 计 算 机 系 统

ＪｏｕｒｎａｌｏｆＣｈｉｎｅｓｅＣｏｍｐｕｔｅｒＳｙｓｔｅｍｓ
２０１５年月 第期

Ｖｏｌ．３６ Ｎｏ．２０１５

　　收稿日期：２０１４１２３１　收修改稿日期：２０１５０２１６　基金项目：国家自然科学基金项目（６１０７３１６３）资助；上海市企业自主创新专项资金项目
（沪ＣＸＹ２０１３８８）资助．　作者简介：林　涛，男，１９８８年生，硕士研究生，ＣＣＦ学生会员，研究方向为软件重构、人工免疫算法；高建华，男，１９６３
年生，博士，教授，博士生导师，ＣＣＦ高级会员，研究方向为软件可靠性理论与设计、软件开发环境与开发技术、数据安全与计算机安全、网络测
试、ＬＳＩ／ＶＬＳＩ测试等领域；伏　雪，女，研究方向为可信计算；林　艳，女，研究方向为软件复用．

面向 ＣｏｄｅＳｍｅｌｌｓ的“容器—破坏者—发现者”检测策略
林　涛１，高建华１，伏　雪１，林　艳２

１（上海师范大学 计算机科学与工程系，上海２００２３４）
２（奥克兰大学 信息系统系，奥克兰 新西兰９２０１９）
Ｅｍａｉｌ：ｌ．ｔ＠ａｃｍ．ｏｒｇ

摘　要：软件重构在软件工程中愈显重要，对需要重构代码ｃｏｄｅｓｍｅｌｌｓ的检测是基础工作，但ｃｏｄｅｓｍｅｌｌｓ定义模糊、无量化．该
文将人工免疫的基本概念与信号迁移至软件工程，提出一种基于危险理论中的树突状细胞算法的检测策略．该策略算法中，包
含ｃｏｄｅｓｍｅｌｌｓ的代码作为抗原，软件度量值转化为危险信号和安全信号等输入信号进行处理，通过权值公式获得成熟信号以
及半成熟信号，比较其相对值高低确定代码是否为ｃｏｄｅｓｍｅｌｌｓ，最终根据成熟环境抗原值决定各种ｃｏｄｅｓｍｅｌｌｓ严重程度的优先
次序．该策略具有较低假阳性率．实验证明该研究在Ｆｓｃｏｒｅ（０７８４）和Ｋａｐｐａ分析（０７５６）上均有效，高于其他检测方法．
关 键 词：软件重构；树突状细胞算法；软件缺陷；软件质量；人工免疫理论；危险理论

中图分类号：ＴＰ３１１　　　　　文献标识码：Ａ　　　　　　文 章 编 号：１０００１２２０（２０１５）

ＡＣｏｎｔａｉｎｅｒｄｅｓｔｒｕｃｔｏｒｅｘｐｌｏｒｅｒＰａｒａｄｉｇｍｔｏＣｏｄｅＳｍｅｌｌｓＤｅｔｅｃｔｉｏｎ

ＬＩＮＴａｏ１，ＧＡＯＪｉａｎｈｕａ１，ＦＵＸｕｅ１，ＬＩＮＹａｎ２
１（ＤｅｐａｒｔｍｅｎｔｏｆＣｏｍｐｕｔｅｒＳｃｉｅｎｃｅａｎｄＴｅｃｈｎｏｌｏｇｙ，ＳｈａｎｇｈａｉＮｏｒｍａｌＵｎｉｖｅｒｓｉｔｙ，Ｓｈａｎｇｈａｉ２００２３４，Ｃｈｉｎａ）
２（ＤｅｐａｒｔｍｅｎｔｏｆＩｎｆｏｒｍａｔｉｏｎＳｙｓｔｅｍａｎｄＯｐｅｒａｔｉｏｎｓＭａｎａｇｅｍｅｎｔ，ＴｈｅＵｎｉｖｅｒｓｉｔｙｏｆＡｕｃｋｌａｎｄ，Ａｕｃｋｌａｎｄ９２０１９，ＮｅｗＺｅａｌａｎｄ）

Ａｂｓｔｒａｃｔ：Ｓｏｆｔｗａｒｅｒｅｆａｃｔｏｒｉｎｇｉｓｉｎｃｒｅａｓｉｎｇｌｙｓｉｇｎｉｆｉｃａｎｔｉｎｓｏｆｔｗａｒｅｅｎｇｉｎｅｅｒｉｎｇ，ｂｅｓｉｄｅｓｉｔｉｓａｆｕｎｄａｍｅｎｔａｌｔａｓｋｆｏｒｔｈｅｄｅｔｅｃｔｉｏｎｏｆ
ｃｏｄｅｓｍｅｌｌｓｂｅｉｎｇｉｎｄｅｆｉｎｉｔｅａｎｄｎｏｎｑｕａｎｔｉｔａｔｉｖｅｆｏｒｔｈｅｐｕｒｐｏｓｅｏｆｒｅｆａｃｔｏｒｉｎｇ．Ａｆｔｅｒｅｓｓｅｎｔｉａｌｃｏｎｃｅｐｔｓａｎｄｓｉｇｎａｌｓａｒｅｍｉｇｒａｔｅｄｔｏ
ｓｏｆｔｗａｒｅｅｎｇｉｎｅｅｒｉｎｇ，ｔｈｅｐａｐｅｒｐｒｅｓｅｎｔｓａｄｅｔｅｃｔｉｏｎｐａｒａｄｉｇｍ，ｗｈｉｃｈｉｓｂａｓｅｄｏｎｄｅｎｄｒｉｔｉｃｃｅｌｌａｌｇｏｒｉｔｈｍｉｎｄａｎｇｅｒｔｈｅｏｒｙａｎｄｒｅｇａｒｄｓ
ｃｏｄｅｓｍｅｌｌｓａｓｔｈｅａｎｔｉｇｅｎ．Ｓｏｆｔｗａｒｅｍｅｔｒｉｃｓｖａｌｕｅｓｃｏｎｖｅｒｔｔｏｔｈｅｄａｎｇｅｒｓｉｇｎａｌａｎｄｔｈｅｓａｆｅｓｉｇｎａｌｆｏｒｐｒｏｃｅｓｓｉｎｇ，ｉｎｗｈｉｃｈｍａｔｕｒｅｓｉｇ
ｎａｌａｎｄｓｅｍｉｍａｔｕｒｅｓｉｇｎａｌｉｓｃａｌｃｕｌａｔｅｄｂｙｗｅｉｇｈｔｅｑｕａｔｉｏｎ．Ｃｏｄｅｓｍｅｌｌｓｃａｎｂｅｃｏｎｆｉｒｍｅｄｉｎｃｏｍｐａｒｉｓｏｎｏｆｒｅｌａｔｉｖｅｓｉｇｎａｌｖａｌｕｅｓ．Ａ
ｖａｒｉｅｔｙｏｆｃｏｄｅｓｍｅｌｌｓ′ｐｒｉｏｒｉｔｉｅｓａｒｅｄｅｔｅｒｍｉｎｅｄｂｙｍａｔｕｒｅｃｏｎｔｅｘｔａｎｔｉｇｅｎｖａｌｕｅ．Ｔｈｅｒｅａｒｅｌｏｗｅｒｆａｌｓｅｐｏｓｉｔｉｖｅｒａｔｅｓｉｎｔｈｅｐａｒａｄｉｇｍ．
ＴｈｅｅｘｐｅｒｉｍｅｎｔｐｒｏｖｅｓｔｈａｔｔｈｉｓａｐｐｒｏａｃｈｉｓｃｏｍｐｅｔｉｔｉｖｅｅｆｆｅｃｔｉｖｅｎｅｓｓｉｎＦｓｃｏｒｅ（０７８４）ａｓｗｅｌｌａｓＫａｐｐａａｎａｌｙｓｉｓ（０７５６）ａｎｄｏｕｔｐｅｒ
ｆｏｒｍａｎｃｅｃｏｍｐａｒｅｄｔｏｏｔｈｅｒｄｅｔｅｃｔｉｏｎｔｅｃｈｎｉｑｕｅｓ．
Ｋｅｙｗｏｒｄｓ：ｓｏｆｔｗａｒｅｒｅｆａｃｔｏｒｉｎｇ；ｄｅｎｄｒｉｔｉｃｃｅｌｌａｌｇｏｒｉｔｈｍ；ｓｏｆｔｗａｒｅｂｕｇ；ｓｏｆｔｗａｒｅｑｕａｌｉｔｙ；ａｒｔｉｆｉｃｉａｌｉｍｍｕｎｅｓｙｓｔｅｍｓ；ｄａｎｇｅｒｔｈｅｏｒｙ

１　引　言

软件工程，尤其是是超大规模系统（Ｕｌｔｒａｌａｒｇｅｓｃａｌｅｓｙｓ
ｔｅｍ，ＵＬＳＳ）面临难以维护、不易升级、频繁崩溃等诸多难题，
软件重构的理念应运而生［１］．一方面，伴随着重构在软件工
程中的地位逐步上升，ｃｏｄｅｓｍｅｌｌｓ作为实现重构的一个重要
基础也同时受到研究者的更多关注．另一方面，对ｃｏｄｅｓｍｅｌｌｓ
的检测尚不能自动化．

Ｆｏｗｌｅｒ等人提出 ｃｏｄｅｓｍｅｌｌｓ概念［２］，并且归纳出２２种
类型．ｃｏｄｅｓｍｅｌｌｓ是程序源代码中可能引起更深层问题的症
状．ｃｏｄｅｓｍｅｌｌｓ的存在使软件项目难以维护，工程不利复用，
代码不易理解．具备 ｃｏｄｅｓｍｅｌｌｓ特征的代码一般需要重构．
其产生原因并非来自需求分析不足或软件首次发行版本的编

程失误，而是软件在代码多次修正、升级后逐渐积累的．针对
ｃｏｄｅｓｍｅｌｌｓ的检测虽然有基于并行搜索［３］和双层最优问题处

理［４］等方法，但是均存在比较高的错检率，即假阳性率．
本研究主要贡献为：应用人工免疫理论，提出一种“容

器—破坏者—发现者”（ＣｏｎｔａｉｎｅｒＤｅｓｔｒｕｃｔｏｒ—Ｅｘｐｌｏｒｅｒ，ＣＤＥ）
策略检测软件代码的ｃｏｄｅｓｍｅｌｌｓ．

２　背　景

本节主要介绍 ｃｏｄｅｓｍｅｌｌｓ和“容器—破坏者—发现者”
检测策略需要应用的树突状细胞算法的生物学机理．
２．１　Ｃｏｄｅｓｍｅｌｌｓ

ｃｏｄｅｓｍｅｌｌｓ是一种“反设计模式”，不会直接产生软件缺
陷，但间接影响软件质量［５］，诸如维护、复用、拓展等问题［６］．
ｃｏｄｅｓｍｅｌｌｓ一般是在软件版本升级时引入的．ｃｏｄｅｓｍｅｌｌｓ研
究面临如下两个问题：

１）ｃｏｄｅｓｍｅｌｌｓ的类型难以划分、是值得商榷的．具体讨
论如下：

（ａ）Ｌｏｎｇｐａｒａｍｅｔｅｒｌｉｓｔ和 ｓｐａｇｈｅｔｔｉｃｏｄｅ１（代码包含复杂
控制结构）两种类型，一般都是ｌｏｎｇｍｅｔｈｏｄ类型的主要特征．

（ｂ）Ｂｌｏｂ类型和 ｄａｔａｃｌａｓｓ两种类型是同一代码重构问
题的体现．Ｂｌｏｂ类型是一个类作为行为，其他类封装数据．因
而，这些其他类自然是ｄａｔａｃｌａｓｓ．

（ｃ）Ｄｉｖｅｒｇｅｎｔｃｈａｎｇｅ和 ｓｈｏｔｇｕｎｓｕｒｇｅｒｙ存在权衡关系．
ｄｉｖｅｒｇｅｎｔｃｈａｎｇｅ是因为各种原因对个别类进行经常性变化；
ｓｈｏｔｇｕｎｓｕｒｇｅｒｙ则与之对应，是对很多类进行反复变化．由
此，在软件工程中，ｄｉｖｅｒｇｅｎｔｃｈａｎｇｅ和ｓｈｏｔｇｕｎｓｕｒｇｅｒｙ矛盾对
立需要权衡利弊．另一方面，ｐａｒａｌｌｅｌｉｎｈｅｒｉｔａｎｃｅｈｉｅｒａｒｃｈｉｅｓ类
型是ｓｈｏｔｇｕｎｓｕｒｇｅｒｙ的一个子集．
２）难以量化．至今，ｃｏｄｅｓｍｅｌｌｓ都缺少精确的数学定

义［７］，对ｃｏｄｅｓｍｅｌｌｓ的检测主要依赖程序员从业经验的主观
判断．

因而，基于以上分析，无需对所有 ｃｏｄｅｓｍｅｌｌｓ类型进行
研究．本研究选取四种 ｃｏｄｅｓｍｅｌｌｓ类型，即 ＬｏｎｇＭｅｔｈｏｄ、Ｌａ
ｚｙＣｌａｓｓ、ＳｐｅｃｕｌａｔｉｖｅＧｅｎｅｒａｌｉｔｙ和 ＲｅｆｕｓｅｄＢｅｑｕｅｓｔ，对其进行
量化研究．
２．２　树突状细胞算法生物学机理

树突状细胞算法是基于危险理论的人工免疫算法［８］．其

生物学基础是人类免疫系统中树突状细胞（ＤｅｎｄｒｉｔｉｃＣｅｌｌ，
ＤＣ）从淋巴结迁移到机体组织，抓取抗原，并收集抗原所处环
境中的多种信号，呈递给Ｔ细胞以识别抗原．

传统免疫学认为免疫应答是机体判别“自我”与“非我”

的物质，危险理论则提出人体免疫是对各种信号做出的反

映［９］．

３　“容器—破坏者—发现者”检测策略

本研究针对ｃｏｄｅｓｍｅｌｌｓ检测，提出“容器—破坏者—发现
者”检测策略，即ＣＤＥ策略．ＣＤＥ策略中的“容器”，主要针对
重构前代码和重构后代码要分属不同“容器”，不可混淆．“破
坏者”指抗原ｃｏｄｅｓｍｅｌｌｓ．“发现者”指树突状细胞ＤＣ．本部分
介绍ＣＤＥ检测策略的基本概念、算法流程以及一个实例分析．
３．１　概念抽象

在应用人工免疫算法制定“容器—破坏者—发现者”检

测策略前，需将人体免疫理论中的相关信号术语迁移至此研

究，如表１所示．病原相关分子模式信号（ｐａｔｈｏｇｅｎｉｃａｓｓｏｃｉａｔ
ｅｄｍｏｌｅｃｕｌａｒｐａｔｔｅｒｎｓ，ＰＡＭＰ）是潜在生物入侵的标记．嵌合分
子信号（ｃｈｉｍｅｒｉｃｓｉｇｎａｌｉｎｇｍｏｌｅｃｕｌｅ，ＣＳＭ）意味树突状细胞开
始准备抗原呈递．

表１　免疫信号术语在软件工程中的解释
Ｔａｂｌｅ１　Ｅｘｐｌａｎａｔｉｏｎｏｆｉｍｍｕｎｅｓｉｇｎａｌｔｅｒｍｉｎｏｌｏｇｙｉｎｓｏｆｔｗａｒｅｅｎｇｉｎｅｅｒｉｎｇ

人体免疫信号 信号方向 生物学解释 软件工程解释

ＰＡＭＰ信号 输入 在病原体中大量存在 明显带有ｃｏｄｅｓｍｅｌｌｓ特征
危险信号 可能伤害机体 模糊带有ｃｏｄｅｓｍｅｌｌｓ特征
安全信号 对机体无害的正常信号 规范代码特征

炎性因子信号 可以膨胀前三种信号 通过此信号，本策略可以适用于各种规模的软件工程

ＣＳＭ信号 输出 ＣＳＭ的浓度决定未成熟ＤＣ是否转换 此信号，决定是否需要对待检代码进一步分析

半成熟信号 免疫系统对安全信号的响应 判定该代码不是ｃｏｄｅｓｍｅｌｌｓ
成熟信号 免疫系统对危险信号的响应 判决该代码是ｃｏｄｅｓｍｅｌｌｓ

３．２　算法
针对ｃｏｄｅｓｍｅｌｌｓ的 ＣＤＥ检测策略基于树突状细胞算

法［１０］，每个ＤＣ都通过迭代扫描代码输出结果，伪代码如下：
算法　ＣＤＥ检测策略
Ｉｎｐｕｔ：Ｓ＝ｃｏｌｌｅｃｔｉｏｎｓｏｆｃｏｄｅ；ｖａｒｉｅｔｙｏｆｓｉｇｎａｌｓ；ｉＤＣ；
Ｏｕｔｐｕｔ：ｓｍＤＣ；ｍＤＣ；ＭＣＡＶ；
１　ＤＣｓ＜Ｉｎｉｔｉａｔｅ（ｉＤＣ）；
２　ＦｏｒｃｏｄｅｉｎａｃｌａｓｓｉｎＳ
３　　ｗｈｉｌｅＣＳＭ＜Ｔｈｒｅｓｈｏｌｄｄｏ
４　　　ｓｃａｎＳ；
５　　　ｇｅｔＰＡＭＰ，ｄａｎｇｅｒｓｉｇｎａｌ，ａｎｄｓａｆｅｓｉｇｎａｌ；
６　　ｅｎｄ
７　ｅｎｄ
８　ｃａｌｃｕｌａｔｅＣＳＭ，ＳｅｍｉＭａｔｕｒｅｓｉｇｎａｌ，ａｎｄＭａｔｕｒｅｓｉｇｎａｌ；
９　ｉｆ
１０　　ＳｅｍｉＭａｔｕｒｅ＞Ｍａｔｕｒｅｔｈｅｎ
１１　　ｓｅｔａｓｓｍＤＣ；
１２　ｅｌｓｅ
１３　　ｓｅｔａｓｍＤＣ；
１４　ｅｎｄ
１５　ｆｏｒａｌｌＤＣｓｄｏ

１６　　ｃａｌｃｕｌａｔｅＭＣＡＶ；
１７　ｅｎｄ

１对于ｃｏｄｅｓｍｅｌｌｓ类型名称，中文尚未有统一规范的翻译，例如 ｓｐａｇｈｅｔｔｉｃｏｄｅ和 ｓｐｅｃｕｌａｔｉｖｅｇｅｎｅｒａｌｉｔｙ两种类型名称，一种中文流行翻译分别是
“意大利面条式代码”以及“夸夸其谈未来性”，存在争议，故全文ｃｏｄｅｓｍｅｌｌｓ类型名称全部使用英文原文．

ＣＤＥ策略总体流程如图１所示．

图１　策略的流程图
Ｆｉｇ．１　Ｐａｒａｄｉｇｍ′ｓｆｌｏｗｃｈａｒｔ

ＣＤＥ策略分为以下几步：
１）ＣＤＥ策略首先初始化软件度量指标与细胞信号之间

的相关参数（算法第１行）．

２ 　　　　　　 小　型　微　型　计　算　机　系　统 　　　　　　２０１５年

２）扫描源代码，获取ＰＡＭＰ、危险信号（ｄａｎｇｅｒｓｉｇｎａｌ）和
安全信号（ｓａｆｅｓｉｇｎａｌ）等输入信号（算法第４、５行）．
３）随后根据权值矩阵使用权值公式计算 ＣＳＭ、半成熟

信号（ＳｅｍｉＭａｔｕｒｅｓｉｇｎａｌ）和成熟信号（Ｍａｔｕｒｅｓｉｇｎａｌ）等作为
输出信号（算法第８行）．

ＤＣ通过权值公式将各种输入信号转化为输出信号，权
值公式如（１）所示，

Ｏｉｐ ＝∑
２

ｊ＝０
ＷｊｐＳｉｊ（１＋Ｉ） （１）

其中：ｉ表示代码的位置，ｊ表示三种输入信号，ｐ代表三
种输出信号，Ｓｉｊ和Ｏｉｐ分别表示程序代码中第ｉ个检测位置的
输入信号和输出信号的强度，Ｉ为炎性因子信号，Ｗｊｐ是权值

公式中的相应权值，见表２．其中，输入信号ＰＡＭＰ以权值Ｗ１
和Ｗ２转为ＣＳＭ信号和成熟输出信号，危险信号和安全信号
的转化是在其基础上增加系数 λ和 μ，根据不同规模软件系
统可以自定．

表２　权值矩阵
Ｔａｂｌｅ２　Ｗｅｉｇｈｔｍａｔｒｉｘ

信号 ＰＡＭＰ信号 危险信号 安全信号

ＣＳＭ信号 Ｗ１ Ｗ１／λ μＷ１
半成熟信号 ０ ０ １
成熟信号 Ｗ２ Ｗ２／λ －μＷ２

４）ＣＳＭ信号若高于转化阈值，则未成熟ＤＣ依据半成熟
信号和成熟信号的相对高低转化为半成熟ＤＣ或成熟ＤＣ（算
法第９行到第１４行）．

未成熟树突状细胞的转化阈值由公式（２）决定：
Ｔ＝（（ｍａｘｐＷｐｃ）＋（ｍａｘｄＷｄｃ）

＋（ｍａｘｓＷｓｃ）） １＋Ｉ()η （２）

其中，Ｔ为转化阈值；ｍａｘｐ、ｍａｘｄ和 ｍａｘｓ分别是最大
ＰＡＭＰ信号、最大危险信号以及最大安全信号；Ｗｐｃ、Ｗｄｃ和

Ｗｓｃ分别是ＰＡＭＰ信号、危险信号和安全信号相对 ＣＳＭ信号
的权值；Ｉ为炎性信号；η为系数，根据具体情况设置．
５）迭代前四步，最终通过 ＭａｔｕｒｅＣｏｎｔｅｘｔＡｎｔｉｇｅｎＶａｌｕｅ

（ＭＣＡＶ）确定该软件工程中的 ｃｏｄｅｓｍｅｌｌｓ是否影响软件总
体质量（算法第１６行）．

ＭＣＡＶ评价整个软件工程中ｃｏｄｅｓｍｅｌｌｓ的严重程度，由
公式（３）决定，

ＭＣＡＶ＝ｍＤＣ数量
抗原总数

（３）

３．３　实例分析
本节以实例具体解释“容器—破坏者—发现者”检测策

略的主要思路．
使用以 ＪＡＶＡ语言编写的开源软件 ＰＩＰＥ［１１］作为研究对

象，检测 ＴｏｋｅｎＥｄｉｔｏｒＰａｎｅｌ类中的 ｕｐｄａｔｅＴａｂｌｅＡｔ方法是否为
ｌｏｎｇｍｅｔｈｏｄ，该方法的度量指标如表３所列．

通过表４将各度量指标转化为输入信号，其中 ｎ为度量
值的数量．对表４作如下说明：

　　１）由于嵌套的使用，将加大程序的时间复杂度和空间复
杂度，故存在嵌套的条件和循环语句，按照指数计算该语句的

数量．

表３　ＰＩＰＥ中ｕｐｄａｔｅＴａｂｌｅＡｔ方法的相关软件度量值
Ｔａｂｌｅ３　Ｒｅｌｅｖａｎｔｓｏｆｔｗａｒｅｍｅｔｒｉｃｓｖａｌｕｅｏｆ

ｕｐｄａｔｅＴａｂｌｅＡｔｍｅｔｈｏｄｉｎＰＩＰＥ
软件度量指标 ｕｐｄａｔｅＴａｂｌｅＡｔ方法

临时变量 ２
ｓｗｉｔｃｈ语句 ０
代码行数 １８
参数数量 ３
条件 ５
循环 １
注释语句２ ２

２）当代编程实践中，例如极限编程，鼓励程序员少写注
释，仅通过方法名称，就使代码用意一目了然．过多的注释蕴
含着方法的复杂晦涩．鉴于此，将注释语句的数量作为 ｌｏｎｇ
ｍｅｔｈｏｄ的一个指标．

表４　输入信号的获得
Ｔａｂｌｅ４　Ｏｂｔａｉｎｉｎｇｏｆｉｎｐｕｔｓｉｇｎａｌｓ

软件度量
指标（数量）

ＰＡＭＰ 危险信号 安全信号

临时变量 ２ｎ ｎ 当ｎ＜４，４ｎ
ｓｗｉｔｃｈ ２ｎ ｎ 当ｎ＜３，４ｎ；当ｎ＝０，４
代码行数 ｎ ｎ／２ 当ｎ＜１５，５ｎ
参数数量 ３ｎ ２ｎ 当ｎ＜４，４ｎ
条件 ４ｎ ３ｎ 当ｎ＜４，５ｎ
循环 ２ｎ ｎ 当ｎ＜３，４ｎ
注释语句 ５ｎ ２ｎ 当ｎ＝１，９
安全信号除所列值之外，在其他情况下均取０

本实例中，表２权值矩阵设置如下：Ｗ１＝Ｗ２＝２，λ＝２，μ
＝１５．炎性因子信号Ｉ为１８，转换阈值为４９８．
计算各输出信号 ＣＳＭ、半成熟信号以及成熟信号，计算

结果分别为６９１６、７８４、２２１２．由此，继续下列两步计算：
１）ＣＳＭ超过转换阈值，则ｉＤＣ满足向ｓｍＤＣ和ｍＤＣ转

换的条件．
２）成熟信号高于半成熟信号，则确定ｉＤＣ向ｍＤＣ转换．

判断ｕｐｄａｔｅＴａｂｌｅＡｔ方法为ｃｏｄｅｓｍｅｌｌｓ中的ｌｏｎｇｍｅｔｈｏｄ．
事实上，原作者在注释中所写的替代方法，已消除 ｕｐｄａ

ｔｅＴａｂｌｅＡｔ方法的ｌｏｎｇｍｅｔｈｏｄ特征．
同理，ＰＩＰＥ中共有 １８９个方法，其中 ｌｏｎｇｍｅｔｈｏｄ有 １４

个，则可根据公式（３）计算出ＭＣＡＶ＝７４％．

４　实　验

本实验将ＣＤＥ策略应用于ＪＡＶＡ开源软件ＧａｎｔｔＰｒｏｊｅｃｔ［１２］．
其中，ＧａｎｔｔＰｒｏｊｅｃｔ是一个跨平台的工程管理软件．

本实验重点关注以下三个问题：

１）本策略能否有效发现代码中的ｃｏｄｅｓｍｅｌｌｓ？

２ｕｐｄａｔｅＴａｂｌｅＡｔ方法的注释包含一行文字，即ＴＯＤＯ：ＤＯＴＨＩＳＩＮＡＢＥＴＴＥＲＷＡＹ（做这个可以有更好办法）和十六行代码．本研究将这十六行
代码，作为一句注释．

３期　　　　　　　 林　涛 等：面向ＣｏｄｅＳｍｅｌｌｓ的“容器—破坏者—发现者”检测策略 　　

　　２）本策略是否优于其他方法？
３）本策略能否比较各种 ｃｏｄｅｓｍｅｌｌｓ对软件工程的影响

程度？

４．１　实验设计
实验环境如下：操作系统为ＷｉｎｄｏｗｓＳｅｒｖｅｒ２０１２６４ｂｉｔ，处

理器为 ＩｎｔｅｌＣｏｒｅｉ７３１３Ｇｈｚ，内存为８ＧＢ．开发语言为 ＪＡ
ＶＡ，开发工具为Ｅｃｌｉｐｓｅ．

对ＧａｎｔｔＰｒｏｊｅｃｔ进行ｃｏｄｅｓｍｅｌｌｓ测试，由于其是比较大型
开源工程，使用其中１１２４个方法，１３２个类，共计２１万行代码．
本研究建立一个手工发现的ｃｏｄｅｓｍｅｌｌｓ数据库ＧｏｌｄＳｔａｎｄａｒｄ
Ｄａｔａｂａｓｅ（ＧＳＤ），该数据库由五名计算机专业研究生（其中三
名有至少两年的软件行业从业经验，五人均至少已经使用ＪＡ
ＶＡ语言五年）手工分析ＧａｎｔｔＰｒｏｊｅｃｔ中的ｃｏｄｅｓｍｅｌｌｓ．

选择 ｌｏｎｇｍｅｔｈｏｄ、ｌａｚｙｃｌａｓｓ、ｓｐｅｃｕｌａｔｉｖｅｇｅｎｅｒａｌｉｔｙ和 ｒｅ
ｆｕｓｅｄｂｅｑｕｅｓｔ等四种 ｃｏｄｅｓｍｅｌｌｓ类型对 ＧａｎｔｔＰｒｏｊｅｃｔ分别使
用ＣＤＥ检测策略和ＤＥＣＯＲ方法（对照组）进行检测，实验过
程如图２所示．

图２　实验流程图
Ｆｉｇ．２　Ｅｘｐｅｒｉｍｅｎｔｆｌｏｗｃｈａｒｔ

ＤＥＣＯＲ首先定义领域特定语言（ｄｏｍａｉｎｓｐｅｃｉｆｉｃｌａｎ
ｇｕａｇｅ，ＤＳＬ），然后使用基于ＤＳＬ一致性的概念规约，诸如类
的职责和结构等，描述 ｃｏｄｅｓｍｅｌｌｓ症状，最后将其映射成检
测算法［１３］．其内核通过Ｐｔｉｄｅｊ工具集成到Ｅｃｌｉｐｓｅ中．
４．２　结果与分析

实验结果如表５所示．
对两种检测方式相应于人工检测的结果，求精确值和返

回值，分别如公式（４）和（５），

精确值＝自动检测的ｃｏｄｅｓｍｅｌｌｓ属于ＧＳＤ的数量
自动检测的ｃｏｄｅｓｍｅｌｌｓ总数量 （４）

返回值＝自动检测的ｃｏｄｅｓｍｅｌｌｓ属于ＧＳＤ的数量ＧＳＤ中ｃｏｄｅｓｍｅｌｌｓ的总数量 （５）

在多数情况下，不能保证精确值与返回值都取得较高值，

因而需要使用 Ｆｓｃｏｒｅ，如公式（６）所示，Ｆｓｃｏｒｅ是精确值与
返回值的调和平均值，Ｆｓｃｏｒｅ值介于０到１之间，０为最差，１
为最优．

Ｆｓｃｏｒｅ＝２精确值返回值
精确值＋返回值 （６）

分析结果如表６所示．
ＤＥＣＯＲ和 ＣＤＥ对四种 ｃｏｄｅｓｍｅｌｌｓ类型检测的结果求

平均值，如下页表７所列，ＣＤＥ策略的精确值、返回值和 Ｆ
ｓｃｏｒｅ分别比ＤＥＣＯＲ高０１８７、０５２２和０４４０．此研究中返回
值与真阳性率是同一概念，说明 ＣＤＥ策略具有良好的真阳

性率．

表５　实验结果
Ｔａｂｌｅ５　Ｅｘｐｅｒｉｍｅｎｔ′ｓｒｅｓｕｌｔｓ

手工检测

Ｌｏｎｇ
Ｍｅｔｈｏｄ

检测出 未检测出

ＤＥＣＯＲ
检测出

未检测出

３５ ２８ ６３
８６ ９７５
１２１
手工检测

检测出 未检测出

ＣＤＥ
检测出

未检测出

８５ １８ １０３
３６ ９８５
１２１

Ｌａｚｙ
Ｃｌａｓｓ

手工检测

检测出 未检测出

ＤＥＣＯＲ
检测出

未检测出

２ １ ３
７ １２２
９
手工检测

检测出 未检测出

ＣＤＥ
检测出

未检测出

６ １ ７
３ １２１
９

Ｓｐｅｃｕｌａ
ｔｉｖｅ
Ｇｅｎｅｒａｌ
ｉｔｙ

手工检测

检测出 未检测出

ＤＥＣＯＲ
检测出

未检测出

４ ５ ９
９ １１４
１３
手工检测

检测出 未检测出

ＣＤＥ
检测出

未检测出

１１ ４ １５
２ １１５
１３

Ｒｅｆｕｓｅｄ
Ｂｅｑｕｅｓｔ

手工检测

检测出 未检测出

ＤＥＣＯＲ
检测出

未检测出

６ ８ １４
２０ ９８
２６
手工检测

检测出 未检测出

ＣＤＥ
检测出

未检测出

２４ ７ ３１
２ ９９
２６

表６　检测的精确值、返回值和Ｆ－ｓｃｏｒｅ分析
Ｔａｂｌｅ６　Ｄｅｔｅｃｔｉｏｎ′ｓｐｒｅｃｉｓｉｏｎ，ｒｅｃａｌｌａｎｄＦ－ｓｃｏｒｅａｎａｌｙｓｉｓ

精确值 返回值 Ｆｓｃｏｒｅ
ＬｏｎｇＭｅｔｈｏｄ ＤＥＣＯＲ ０５５６ ０２８９ ０３８０

ＣＤＥ ０８２５ ０７０２ ０７５９
ＬａｚｙＣｌａｓｓ ＤＥＣＯＲ ０６６７ ０２２２ ０３３３

ＣＤＥ ０８５７ ０６６７ ０７５０
Ｓｐｅｃｕｌａｔｉｖｅ ＤＥＣＯＲ ０４４４ ０３０８ ０３６４
Ｇｅｎｅｒａｌｉｔｙ ＣＤＥ ０７３３ ０８４６ ０７８５
ＲｅｆｕｓｅｄＢｅｑｕｅｓｔ ＤＥＣＯＲ ０４２９ ０２３１ ０３００

ＣＤＥ ０７７４ ０９２３ ０８４２

ＤＥＣＯＲ和ＣＤＥ两种方法分别与人工检测结果的相符合

４ 　　　　　　 小　型　微　型　计　算　机　系　统 　　　　　　２０１５年

程度可以使用Ｃｏｈｅｎ′ｓＫａｐｐａ分析．Ｋａｐｐａ分析是比较两组数
据相符一致性的一种统计方法，其值属于０（完全不同）到１
（完全相同）之间，值越高，表示自动检测方式的结果与人工

结果越吻合，ＣＤＥ策略的平均值比 ＤＥＣＯＲ高出０４７２，如表
８所列．

表７　两种方法对ｃｏｄｅｓｍｅｌｌｓ检测的均值
Ｔａｂｌｅ７　Ａｖｅｒａｇｅｓｏｆｃｏｄｅｓｍｅｌｌｓ′
ｄｅｔｅｃｔｉｏｎｂｙｔｈｅｔｗｏａｐｐｒｏａｃｈｅｓ

精确值 返回值 Ｆｓｃｏｒｅ
ＤＥＣＯＲ ０５２４ ０２６２ ０３４４
ＣＤＥ ０７１１ ０７８４ ０７８４

表８　检测的Ｋａｐｐａ分析
Ｔａｂｌｅ８　Ｄｅｔｅｎｔｉｏｎ′ｓＫａｐｐａａｎａｌｙｓｉｓ

ＤＥＣＯＲ ＣＤＥ
ＬｏｎｇＭｅｔｈｏｄ ０３３１ ０７３２
ＬａｚｙＣｌａｓｓ ０３１０ ０７３４
ＳｐｅｃｕｌａｔｉｖｅＧｅｎｅｒａｌｉｔｙ ０３０８ ０７６０
ＲｅｆｕｓｅｄＢｅｑｕｅｓｔ ０１８８ ０７９９
平均值 ０２８４ ０７５６

ＣＤＥ检测策略与 ＤＥＣＯＲ方法在 Ｋａｐｐａ分析方面的对
比，如图３所示．

图３　ＤＥＣＯＲ和ＣＤＥ的有效性比较
Ｆｉｇ．３　ＥｆｆｅｃｔｉｖｅｎｅｓｓｃｏｍｐａｒｉｓｏｎｂｅｔｗｅｅｎＤＥＣＯＲａｎｄＣＤＥ

４．３　ＭＣＡＶ值
通过公式（３），计算ＭＣＡＶ值（如表９所示）可以得出开源

软件中ｃｏｄｅｓｍｅｌｌｓ的严重程度，回答实验关注的第三个问题．

表９　ＧａｎｔｔＰｒｏｊｅｃｔ中四种ｃｏｄｅｓｍｅｌｌｓ的ＭＣＡＶ值
Ｔａｂｌｅ９　Ｆｏｕｒｃｏｄｅｓｍｅｌｌｓ＇ＭＣＡＶｖａｌｕｅｉｎＧａｎｔｔＰｒｏｊｅｃｔ

Ｌｏｎｇ
Ｍｅｔｈｏｄ

Ｌａｚｙ
Ｃｌａｓｓ

Ｓｐｅｃｕｌａｔｉｖｅ
Ｇｅｎｅｒａｌｉｔｙ

Ｒｅｆｕｓｅｄ
Ｂｅｑｕｅｓｔ

ＭＣＡＶ值 ００９２ ００５３ ０１１４ ０２３５

Ｓｐｅｃｕｌａｔｉｖｅｇｅｎｅｒａｌｉｔｙ和ＲｅｆｕｓｅｄＢｅｑｕｅｓｔ两种ｃｏｄｅｓｍｅｌｌｓ
类型是 ＧａｎｔｔＰｒｏｊｅｃｔ的主要潜在重构问题，在 ＧａｎｔｔＰｒｏｊｅｃｔ整
个软件工程的环境中，需要重视此两种ｃｏｄｅｓｍｅｌｌｓ．

５　结　论

软件重构的研究与实践在学术界和工业界如火如荼的展

开，需要被重构代码的检测作为其基础工作格外重要，本文所

提出的“容器—破坏者—发现者”检测策略在多方面表现出

优异性能．
至于将来工作，主要有两个方向．首先，在短期，对更多在

代码尺度和编程语言方面各不相同的软件进行 ｃｏｄｅｓｍｅｌｌｓ
检测，以完善ＣＤＥ策略．

其次，由于ｃｏｄｅｓｍｅｌｌｓ定义的争议性，在更长远时间，工
作将集中于其形式化定义以及探讨对检测到的 ｃｏｄｅｓｍｅｌｌｓ
进行自动重构．

Ｒｅｆｅｒｅｎｃｅｓ：
［１］ＬｉｕＷｅｉ，ＨｕＺｈｉｇａｎｇ，ＬｉｕＨｏｎｇｔａｏ．Ｓｉｎｇｌｅｔｏｎｐａｔｔｅｒｎｄｉｒｅｃｔｅｄａｕ

ｔｏｍａｔｉｃｒｅｆａｃｔｏｒｉｎｇｆｏｒｓｏｕｒｃｅｃｏｄｅ［Ｊ］．ＪｏｕｒｎａｌｏｆＣｈｉｎｅｓｅＣｏｍ
ｐｕｔｅｒＳｙｓｔｅｍｓ，２０１４，３５（１２）：２６６４２６６９．

［２］ＦｏｗｌｅｒＭ，ＢｅｃｋＫ，ＢｒａｎｔＪ，ｅｔａｌ．Ｒｅｆａｃｔｏｒｉｎｇ：ｉｍｐｒｏｖｉｎｇｔｈｅｄｅｓｉｇｎ
ｏｆｅｘｉｓｔｉｎｇｃｏｄｅ［Ｍ］．Ｂｏｓｔｏｎ，ＭＡ：ＡｄｄｉｓｏｎＷｅｓｌｅｙＰｒｏｆｅｓｓｉｏｎａｌ，
１９９９．

［３］ＫｅｓｓｅｎｔｉｎｉＷ，ＫｅｓｓｅｎｔｉｎｉＭ，ＳａｈｒａｏｕｉＨ，ｅｔａｌ．Ａｃｏｏｐｅｒａｔｉｖｅｐａｒａｌ
ｌｅｌｓｅａｒｃｈｂａｓｅｄｓｏｆｔｗａｒｅｅｎｇｉｎｅｅｒｉｎｇａｐｐｒｏａｃｈｆｏｒｃｏｄｅｓｍｅｌｌｓｄｅ
ｔｅｃｔｉｏｎ［Ｊ］．ＩＥＥＥＴｒａｎｓａｃｔｉｏｎｓｏｎＳｏｆｔｗａｒｅＥｎｇｉｎｅｅｒｉｎｇ，２０１４，４０
（９）：８４１８６１．

［４］ＳａｈｉｎＤ，ＫｅｓｓｅｎｔｉｎｉＭ，ＢｅｃｈｉｋｈＳ，ｅｔａｌ．Ｃｏｄｅｓｍｅｌｌｄｅｔｅｃｔｉｏｎａｓａ
ｂｉｌｅｖｅｌｐｒｏｂｌｅｍ［Ｊ］．ＡＣＭ ＴｒａｎｓａｃｔｉｏｎｓｏｎＳｏｆｔｗａｒｅＥｎｇｉｎｅｅｒｉｎｇ
ａｎｄＭｅｔｈｏｄｏｌｏｇｙ，２０１４，２４（１）：１４４．

［５］ＨａｌｌＴ，ＺｈａｎｇＭ，ＢｏｗｅｓＤ，ｅｔａｌ．Ｓｏｍｅｃｏｄｅｓｍｅｌｌｓｈａｖｅａｓｉｇｎｉｆｉ
ｃａｎｔｂｕｔｓｍａｌｌｅｆｆｅｃｔｏｎｆａｕｌｔｓ［Ｊ］．ＡＣＭＴｒａｎｓａｃｔｉｏｎｓｏｎＳｏｆｔｗａｒｅ
ＥｎｇｉｎｅｅｒｉｎｇａｎｄＭｅｔｈｏｄｏｌｏｇｙ，２０１４，２３（４）：１３９．

［６］ＢｉａｎＹｉｘｉｎ，ＷａｎｇＴｉａｎｔｉａｎ，ＳｕＸｉａｏｈｏｎｇ，ｅｔａｌ．Ａｓｅｍａｎｔｉｃｓｐｒｅ
ｓｅｒｖｉｎｇａｍｏｒｐｈｏｕｓｐｒｏｃｅｄｕｒｅｅｘｔｒａｃｔｉｏｎｍｅｔｈｏｄｆｏｒＣｃｌｏｎｅｃｏｄｅ
［Ｊ］．ＪｏｕｒｎａｌｏｆＣｏｍｐｕｔｅｒＲｅｓｅａｒｃｈａｎｄＤｅｖｅｌｏｐｍｅｎｔ，２０１３，５０
（７），１５３４１５４１．

［７］ＢｏｗｅｓＤ，ＲａｎｄａｌｌＤ，ＨａｌｌＴ．Ｔｈｅｉｎｃｏｎｓｉｓｔｅｎｔｍｅａｓｕｒｅｍｅｎｔｏｆｍｅｓ
ｓａｇｅｃｈａｉｎｓ［Ｃ］．４ｔｈＩｎｔｅｒｎａｔｉｏｎａｌＷｏｒｋｓｈｏｐｏｎＥｍｅｒｇｉｎｇＴｒｅｎｄｓｉｎ
ＳｏｆｔｗａｒｅＭｅｔｒｉｃｓ（ＷＥＴＳｏＭ），ＳａｎＦｒａｎｃｉｓｃｏ，ＣＡ，２０１３．

［８］ＧｕＦ，ＧｒｅｅｎｓｍｉｔｈＪ，ＡｉｃｋｅｌｉｎＵ．Ｔｈｅｏｒｅｔｉｃａｌｆｏｒｍｕｌａｔｉｏｎａｎｄａｎａｌｙ
ｓｉｓｏｆｔｈｅｄｅｔｅｒｍｉｎｉｓｔｉｃｄｅｎｄｒｉｔｉｃｃｅｌｌａｌｇｏｒｉｔｈｍ［Ｊ］．Ｂｉｏｓｙｓｔｅｍｓ，
２０１３，１１１（２）：１２７１３５．

［９］ＩｏｎｉｔａＭ Ｇ，ＰａｔｒｉｃｉｕＶＶ．Ｂｉｏｌｏｇｉｃａｌｌｙｉｎｓｐｉｒｅｄｒｉｓｋａｓｓｅｓｓｍｅｎｔｉｎ
ｃｙｂｅｒｓｅｃｕｒｉｔｙｕｓｉｎｇｎｅｕｒａｌｎｅｔｗｏｒｋｓ［Ｃ］．１０ｔｈＩｎｔｅｒｎａｔｉｏｎａｌＣｏｎｆｅｒ
ｅｎｃｅｏｎＣｏｍｍｕｎｉｃａｔｉｏｎｓ（ＣＯＭＭ），Ｂｕｃｈａｒｅｓｔ，２０１４．

［１０］ＭｏｈａｍａｄＭｏｈｓｉｎＭＦ，ＡｂｕＢａｋａｒＡ，ＨａｍｄａｎＡＲ．Ｏｕｔｂｒｅａｋｄｅ
ｔｅｃｔｉｏｎｍｏｄｅｌｂａｓｅｄｏｎｄａｎｇｅｒｔｈｅｏｒｙ［Ｊ］．ＡｐｐｌｉｅｄＳｏｆｔＣｏｍｐｕ
ｔｉｎｇ，２０１４，２４：６１２６２２．

［１１］ＴａｔｔｅｒｓａｌｌＳ．ＰＩＰＥＰｌａｔｆｏｒｍｉｎｄｅｐｅｎｄｅｎｔｐｅｔｒｉｎｅｔｅｄｉｔｏｒ［ＥＢ／ＯＬ］．
ｈｔｔｐｓ：／／ｇｉｔｈｕｂ．ｃｏｍ／ｓａｒａｈｔａｔｔｅｒｓａｌｌ／ＰＩＰＥ，２０１４．

［１２］ＴｈｏｍａｓＡ，ＢａｒａｓｈｅｖＤ．ＧａｎｔｔＰｒｏｊｅｃｔ［ＥＢ／ＯＬ］．ｈｔｔｐ：／／ｗｗｗ．ｇａ
ｎｔｔｐｒｏｊｅｃｔ．ｂｉｚ／，２０１４．

［１３］ＭｏｈａＮ，ＧｕｅＸ，ＨｅＸ，ｅｔａｌ．ＤＥＣＯＲ：ａｍｅｔｈｏｄｆｏｒｔｈｅｓｐｅｃｉｆｉｃａ
ｔｉｏｎａｎｄｄｅｔｅｃｔｉｏｎｏｆｃｏｄｅａｎｄｄｅｓｉｇｎｓｍｅｌｌｓ［Ｊ］．ＩＥＥＥＴｒａｎｓａｃｔｉｏｎｓ
ｏｎＳｏｆｔｗａｒｅＥｎｇｉｎｅｅｒｉｎｇ，２０１０，３６（１）：２０３６．

附中文参考文献：

［１］刘　伟，胡志刚，刘宏韬．单例模式导向的源代码自动重构研究
［Ｊ］．小型微型计算机系统，２０１４，３５（１２）：２６６４２６６９．

［６］边奕心，王甜甜，苏小红，等．一种语义保持的克隆代码无定型过
程提取方法［Ｊ］．计算机研究与发展，２０１３（７）：１５３４１５４１．

５期　　　　　　　 林　涛 等：面向ＣｏｄｅＳｍｅｌｌｓ的“容器—破坏者—发现者”检测策略 　　

